answersLogoWhite

0


Best Answer

Higher octane ratings correlate to higher activation energies. Activation energy is the amount of energy necessary to start a chemical reaction. Since higher octane fuels have higher activation energies, it is less likely that a given compression will cause knocking. (Note that it is the absolute pressure (compression) in the combustion chamber which is important - not the compression ratio. The compression ratio only governs the maximum compression that can be achieved). It might seem odd that fuels with higher octane ratings explode less easily, yet are popularly thought of as more powerful. The misunderstanding is caused by confusing the ability of the fuel to resist compression detonation as opposed to the ability of the fuel to burn (combustion). Using a fuel with a higher octane lets an engine run at a higher compression ratio without having problems with knock. Actual compression in the combustion chamber is determined by the compression ratio as well as the amount of air restriction in the intake manifold (manifold vacuum) as well as the barometric pressure, which is a function of elevation and weather conditions. Many high-performance engines are designed to operate with a high maximum compression and thus need a high quality (high energy) fuel usually associated with high octane numbers and thus demand high-octane premium gasoline. Using high octane fuel for an engine makes a difference when the engine is producing its maximum power or when under a high load such as climbing a large hill or carrying excessive weight. This will occur when the intake manifold has no air restriction and is running at minimum vacuum. Depending on the engine design, this particular circumstance can be anywhere along the RPM range, but is usually easy to pinpoint if you can examine a printout of the power output (torque values) of an engine. On a typical high-revving motorcycle engine, for example, the maximum power occurs at a point where the movements of the intake and exhaust valves are timed in such a way to maximize the compression loading of the cylinder; although the piston is already rising at the time the intake valve closes, the forward speed of the charge coming into the cylinder is high enough to continue to load the air-fuel mixture in. When this occurs, if a fuel with below recommended octane is used, the engine will knock. Modern engines have anti-knock provisions built into the control systems and this is usually achieved by dynamically de-tuning the engine while under load by increasing the fuel-air mixture and retarding the spark. Here is a link to a white paper that gives an example: [4] . In this example, the engine maximum power is reduced by about 4% with a fuel switch from 93 to 91 octane (Excerpts taken from Wikipedia)

User Avatar

Wiki User

16y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is plus gasoline better for your car?
Write your answer...
Submit
Still have questions?
magnify glass
imp