answersLogoWhite

0


Best Answer

Chloroplasts absorb light and use it in conjunction with water and carbon dioxide to produce sugars, the raw material for energy and biomass production in all green plants and the animals that depend on them, directly or indirectly, for food. Chloroplasts capture light energy to conserve free energy in the form of ATP and reduce NADP to NADPH through a complex set of processes cChloroplasts are observable morphologically as flat discs usually 2 to 10 micrometer in diameter and 1 micrometer thick. In land plants they are generally 5 μm in diameter and 2.3 μm thick. The chloroplast is contained by an envelope that consists of an inner and an outer phospholipid membrane. Between these two layers is the intermembrane space. A typical [parenchyma] cell contains about 10 to 100 chloroplasts.

The material within the chloroplast is called the stroma, corresponding to the cytosol of the original bacterium, and contains one or more molecules of small circular DNA. It also contains ribosomes, although most of its proteins are encoded by genes contained in the host cell nucleus, with the protein products transported to the chloroplast.

Chloroplast ultrastructure:

1. outer membrane

2. intermembrane space

3. inner membrane (1+2+3: envelope)

4. stroma (aqueous fluid)

5. thylakoid lumen (inside of thylakoid)

6. thylakoid membrane

7. granum (stack of thylakoids)

8. thylakoid (lamella)

9. starch

10. ribosome

11. plastidial DNA

12. plastoglobule (drop of lipids)Within the stroma are stacks of thylakoids, the sub-organelles which are the site of photosynthesis. The thylakoids are arranged in stacks called grana (singular: granum). A thylakoid has a flattened disk shape. Inside it is an empty area called the thylakoid space or lumen. Photosynthesis takes place on the thylakoid membrane; as in mitochondrial oxidative phosphorylation, it involves the coupling of cross-membrane fluxes with biosynthesis via the dissipation of a proton electrochemical gradient.

In the electron microscope, thylakoid membranes appear as alternating light-and-dark bands, each 0.01 μm thick. Embedded in the thylakoid membrane is the antenna complex, which consists of the light-absorbing pigments, including chlorophyll and carotenoids, and proteins (which bind the chlorophyll). This complex both increases the surface area for light capture, and allows capture of photons with a wider range of wavelengths. The energy of the incident photons is absorbed by the pigments and funneled to the reaction centre of this complex through resonance energy transfer. Two chlorophyll molecules are then ionised, producing an excited electron which then passes onto the photochemical reaction centre.

Recent studies have shown that chloroplasts can be interconnected by tubular bridges called stromules, formed as extensions of their outer membranes.[7][8] Chloroplasts appear to be able to exchange proteins via stromules,[9] and thus function as a network.

alled photosynthesis.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

9y ago

inner/outer membranes

stroma and grana. The thylakoids are present in the stroma- where photolysis of water takes place.

grana is responsible for dark reactions of photosynthesis for assimilation of Carbon dioxide.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the parts of a chloroplast and their functions?
Write your answer...
Submit
Still have questions?
magnify glass
imp