answersLogoWhite

0

What is osmoregulators?

Updated: 9/17/2019
User Avatar

Wiki User

11y ago

Best Answer

osmoregulation is the regulation of water content in the body. It controls the permiability of the walls of the collecting duct.

User Avatar

Makenzie Kautzer

Lvl 10
2y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

15y ago

osmoregulation is the regulation of water content in the body. It controls the permiability of the walls of the collecting duct.

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

the process of excreting out the waste matterials and excess of water is called osmo-regulation

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is osmoregulators?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What marine organisms whose internal salt concentration varies with that of their environment are examples of?

osmoregulators


How can saltwater organisms survive in their saltwater environment?

By osmoregulation. Differs by species or type of organism, but they are either osmoconformers or osmoregulators.


Marine animals that have body fluids with a solute concentration equal to that of the surrounding seawater are said to be?

osmoconformers


What is transported in the plasma?

Ions: sodium, chlorine, pottasiu, calcium; buffers and osmoregulators; also hormones are transported in the blood plasma.


What is the difference between osmoregulators and osmoconformers?

Osmoconformer adjusts to the osmotic concentration of its surrounding so that the osmoregularity is the same at the medium. Osmoconformer maintain its own osmotic concentration regarldess of the surrounding medium.


How does the salmon function as a good osmoregulator?

Salmon are good osmoregulators because they can maintain a proper water balance in their bodies in both salt water and freshwater. This change in environment doesn't cause them to die.


What fish live in salt water?

salt water crocodiles do, and can go from fresh to salt water at will.


What is the form of enantiostasis in estuarine organisms?

With the help of Enantiostasis an estuarine organism is able to maintain metabolic functions while withstanding the extreme fluctuation in conditions. Organisms that do this are called osmoconformers and osmoregulators. Two major types of osmoregulation are osmoconformers and osmoregulators. They apply to both plants and animals. Osmoregulation is the active regulation of the osmotic pressure of an organism's fluids to maintain the homeostasis, or equilibrium, of the organism's water content; that is it keeps the organism's fluids from becoming too diluted or too concentrated. These organisms are unable to tolerate a range of salt concentrations in their body fluids and so avoid changes in their internal environment by keeping the solutes at an optimum level. Fast-swimming organisms such as fish overcome this variation by moving away during a change in the salt concentration of the water. Most molluscs can close their shells and wait until the external environment is favourable again. Bottom-dwellers can burrow into the mud or sand. Another example is freshwater fish. The gills actively uptake salt from the environment by the use of mitochondria rich cells. Water will diffuse into the fish, so the fish excretes very hypotonic (dilute) urine to expel all excess water. Osmoconformers work differently, almost opposite to osmoregulators in fact. As the name suggests they conform to the surrounding environment by altering the concentration of their internal solutes. Their metabolic processes are able to tolerate any changes in salinity in their own body fluids and cells, a contrast to osmoregulators.A marine fish for example, forrfhas an internal osmotic concentration lower than that of the surrounding seawater, so it tends to lose water and gain salt. It actively excretes salt out from the gills and very hypertonic (concentrated) urine. Plants in mangroves and coastal marshes, also known as Halophyes, live in the boundary between salt and fresh water. However since plants cannot move, they overcome this variation in the ecosystem by means of salt barriers, secretion of salt and salt deposits. Secretion is when some plants concentrate salt and get rid of it through special glands on the leaves, often very visible as you can see. Such examples include the Grey or River Mangroves. Salt deposits are where salt is usually deposited in older tissues, branches or leaves which are then discarded in order to get rid of the salt. Salt barriers are special tissues in the roots and lower stems that stop salt from entering the plant but still allows water uptake.


What is the passage of lymph through lymph vessels?

Arteries Arterioles Blood capillaries Interstitial fluid Lymph capillaries Lymphatic vessels Lymph trunks Thoracic ducts or right lymphatic duct Subclavian veins (blood)