answersLogoWhite

0


Best Answer

expiremental: finding the answer by observing it lots of times..

theoretical: its like a theory,, you just guess!!~ <3

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the relationship between experimental and theoretical probability?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the difference between experimental and theoretical probability?

The difference between experimental probability and theoretical probability is that experimental probability is the probability determined in practice. Theoretical probability is the probability that should happen. For example, the theoretical probability of getting any single number on a number cube is one sixth. But maybe you roll it twice and get a four both times. That would be an example of experimental probability.


What is alike between experimental and theoretical probability?

They are probabilities: that is, estimates of the likelihood of an event happening.


What is the relationship between relative frequency and theoretical probability?

5746


Similarities between experimental and experimental probability?

They are exactly the same


What is the difference between theoretical probability and empirical probabilities?

empirical probability is when you actually experiment with it and get data values, and theoretical probability is when you use math to make an educated guess.


What is the difference between empirical and theoretical probability?

Empirical anything is what is observed. Theoretical is a calculation of what things ought to be.


What are the factors that affected the difference between theoretical and experimental values?

mostly, how good your theory is. Remember, experimental values are from reality.


What is sequence in probability?

There is no relationship between sequences and probability.


What does a negative percent of the difference mean between experimental and theoretical probabilities of a given event?

First, it is important to note that it is very unlikely that the experimental and theoretical probabilities will agree exactly. As an extreme example, if you toss a coin an odd number of times, the resulting experimental probability cannot possibly be exactly 1/2. It should be easy to see that this remains true even if the coin is tossed googleplex+1 number of times.A negative difference could be because the number of trials was too small and, with an increased number of trials, the experimental probability would gradually increase towards the theoretical probability.It is also possible that the theoretical model is wrong. You may have assumed that the coin that was being tossed was fair when it was not. Or there were some factors that you failed to take full account of in your theoretical model.Or, of course, it could be a mixture of both.First, it is important to note that it is very unlikely that the experimental and theoretical probabilities will agree exactly. As an extreme example, if you toss a coin an odd number of times, the resulting experimental probability cannot possibly be exactly 1/2. It should be easy to see that this remains true even if the coin is tossed googleplex+1 number of times.A negative difference could be because the number of trials was too small and, with an increased number of trials, the experimental probability would gradually increase towards the theoretical probability.It is also possible that the theoretical model is wrong. You may have assumed that the coin that was being tossed was fair when it was not. Or there were some factors that you failed to take full account of in your theoretical model.Or, of course, it could be a mixture of both.First, it is important to note that it is very unlikely that the experimental and theoretical probabilities will agree exactly. As an extreme example, if you toss a coin an odd number of times, the resulting experimental probability cannot possibly be exactly 1/2. It should be easy to see that this remains true even if the coin is tossed googleplex+1 number of times.A negative difference could be because the number of trials was too small and, with an increased number of trials, the experimental probability would gradually increase towards the theoretical probability.It is also possible that the theoretical model is wrong. You may have assumed that the coin that was being tossed was fair when it was not. Or there were some factors that you failed to take full account of in your theoretical model.Or, of course, it could be a mixture of both.First, it is important to note that it is very unlikely that the experimental and theoretical probabilities will agree exactly. As an extreme example, if you toss a coin an odd number of times, the resulting experimental probability cannot possibly be exactly 1/2. It should be easy to see that this remains true even if the coin is tossed googleplex+1 number of times.A negative difference could be because the number of trials was too small and, with an increased number of trials, the experimental probability would gradually increase towards the theoretical probability.It is also possible that the theoretical model is wrong. You may have assumed that the coin that was being tossed was fair when it was not. Or there were some factors that you failed to take full account of in your theoretical model.Or, of course, it could be a mixture of both.


What is the difference between experimental and theoretical physics?

When theoretical physicists work on equations and don't test their hypothesis, experimental physicists test their hypothesis and verify their conclusion. Usually theoretical physicists work on things like black holes and string-theory when experimental physicists work on Newtonian laws.


What is the difference between mathematical probability and experimental probability?

Mathematical probability is how many times something is projected to occur, where as experimental probability is how many times it actually occurred. For example, when discussing the probability of a coin landing heads side up... Mathematical probability is 1:2. However, if you actually carryout an experiment flipping the coin 5 times the Experimental probability may be 2:5


How would you compare theoretical probability and experimental probability for getting three heads to the theoretical probability. would you expect the probabilities to be equal .?

I'm going to assume you're looking for the probability of getting three heads out of three coin spins and that you're using a fair coin. For coin spins, theoretical probability is very simple. The probability of getting three heads in a row is 1/2 * 1/2 * 1/2 = 1/8. This means that if you tossed a coin three times, you'd expect to see three heads once every 8 trials. For experimental probability you need to define clear trials, for this experiment you can't just spin a coin over and over and count the number of times you see three heads in a row, for example, if you threw the following: H T H H T T H H H H H T T H T T T you have three cases where you have three heads in a row, but they all overlap so these are not independent trials and cannot be compared to the theoretical result. When conducting your experiment, you know that if you get a T in your trial, it doesn't matter what comes after, that trial has already failed to get three heads in a row. The trial is deemed a success if you get three heads in a row, naturally. As a result, if you threw the above sequence, you would to determine your experimental probability in the following way: H T fail H H T fail T fail H H H success H H T fail T fail H T fail T fail T fail In this example we have 8 trials and one success, therefore the experimental probability is 1/8. The sample variance (look it up), however is also 1/8, meaning that all you really know is that the experimental probability could be anywhere between 0 and 1/4. The only way to get the variance down (and therefore reduce your confidence interval) is to perform more and more trials. It's unlikely for the theoretical probability and experimental probability to be EXACTLY the same but the more trials you do, the more the experimental probability will converge on the theoretical probability.