answersLogoWhite

0


Best Answer

Because gravity is acting on the vertical component, exerting a constant -9.8m/s2 worth of acceleration.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why does the vertical component of velocity for a projectile change with time where as the horizontal component of velocity doesn't?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

How is the horizontal component of velocity for a projectile affected by the vertical component?

The horizontal component of velocity for a projectile is not affected by the vertical component at all. Horizontal component is measured as xcos(theta) Vertical component is measured as xsin(theta) Whereas theta is the angle, and x is the magnitude, or initial speed.


How does the unbalanced force of gravity affect the horizontal and vertical velocity of an object in projectile?

In the absence of air resistance, the force of gravity has no effect on the horizontal component of a projectile's velocity, and causes the vertical component of its velocity to increase by 9.8 meters (32.2 feet) per second downward for every second of its flight.


What is the magnitude of the velocity of a vertical projectile at its maximum height is equal to?

The horizontal component of a projectile's velocity doesn't change, until the projectile hits somethingor falls to the ground.The vertical component of a projectile's velocity becomes [9.8 meters per second downward] greatereach second. At the maximum height of its trajectory, the projectile's velocity is zero. That's the pointwhere the velocity transitions from upward to downward.


How does the unbalanced force of gravity affect the horizontal and vertical velocities of an object in projectile?

In the absence of air resistance, the force of gravity has no effect on the horizontal component of a projectile's velocity, and causes the vertical component of its velocity to increase by 9.8 meters (32.2 feet) per second downward for every second of its flight.


Why does the horizontal component of velocity for a projectile remain constant while the vertical component changes?

Since the velocity is constant due to the fact that there are no external forces acting in the horizontal direction, if you neglect air resistance, therefore, the horizontal velocity of a projectile is constant.

Related questions

How is the horizontal component of velocity for a projectile affected by the vertical component?

The horizontal component of velocity for a projectile is not affected by the vertical component at all. Horizontal component is measured as xcos(theta) Vertical component is measured as xsin(theta) Whereas theta is the angle, and x is the magnitude, or initial speed.


What is a vertical projectile?

One that goes directly up - the velocity having no horizontal component.


Which of these components of projectile motion is not influenced by gravity?

Horizontal and vertical components which need to be treated independently from each other when working out either the horizontal or vertical motion.


How does the unbalanced force of gravity affect the horizontal and vertical velocity of an object in projectile?

In the absence of air resistance, the force of gravity has no effect on the horizontal component of a projectile's velocity, and causes the vertical component of its velocity to increase by 9.8 meters (32.2 feet) per second downward for every second of its flight.


What is the magnitude of the velocity of a vertical projectile at its maximum height is equal to?

The horizontal component of a projectile's velocity doesn't change, until the projectile hits somethingor falls to the ground.The vertical component of a projectile's velocity becomes [9.8 meters per second downward] greatereach second. At the maximum height of its trajectory, the projectile's velocity is zero. That's the pointwhere the velocity transitions from upward to downward.


How does the unbalanced force of gravity affect the horizontal and vertical velocities of an object in projectile?

In the absence of air resistance, the force of gravity has no effect on the horizontal component of a projectile's velocity, and causes the vertical component of its velocity to increase by 9.8 meters (32.2 feet) per second downward for every second of its flight.


Why does the horizontal component of velocity for a projectile remain constant while the vertical component changes?

Since the velocity is constant due to the fact that there are no external forces acting in the horizontal direction, if you neglect air resistance, therefore, the horizontal velocity of a projectile is constant.


In the absence of air friction does the horizontal component of a projectile's velocity change as the projectile moves is this True False?

A projectile will travel on a straight line unless external forces act upon it. Gravity will pull the projectile downward, i.e. affect its vertical velocity component. This is why the projectile will decelerate upwards, reach a maximum elevation, and accelerate back down to earth. The force vector of air resistance points in the opposite direction of motion, slowing the projectile down. For example, If the projectile is going forward and up, air resistance is pushing it backwards (horizontal component) and down (vertical component). Without air resistance, there is no external force acting upon the horizontal velocity component and the projectiles ground speed will stay constant as it gains altitude and falls back down to earth.


What is the vertical velocity of a projectile at the highest point in its trajectory?

The vertical velocity is zero at the highest point. It has ceased moving upward and will begin moving downward. Gravity and air resistance will have negated the original vertical velocity (y-component). So the velocity at the highest point has only a horizontal or x-component.


Projectile's vertical velocity component changes at a constant?

Gravity... I think


Why if the object moves as a projectile the X component of the velocity is constant and the Y component change at the same rate?

The 'x' component of the velocity is usually the label given to the horizontalcomponent. Also, remember, we generally ignore air-resistance in this typeof exercise. When we do that, there is no horizontal force on the object, sothe horizontal component of velocity can't change.The only force on the object is gravity, and that's completely vertical, so onlythe vertical component of velocity can change.


What is the horizontal acceleration of a projectile as its position changes?

In the usual simple treatment of projectile motion, the horizontal component of the projectile's velocity is assumed to be constant, and is equal to the magnitude of the initial (launch) velocity multiplied by the cosine of the elevation angle at the time of launch.